Appendix E-2

"HAP Benefits Analysis in Section 812 Reports to Congress; Briefing for SAB/EPA Workshop, June 22, 2000,"

Presented by Mr. James DeMocker

HAP Benefits Analysis in §812 Reports to Congress

Briefing for SAB/EPA Workshop June 22, 2000

§812 Benefit-Cost Analyses Analytical Requirements

- "(a)...The Administrator shall conduct a comprehensive analysis of this Act on the public health, economy, and environment... [which] should consider the costs, benefits and other effects...[of] each standard issued for... (2) a hazardous air pollutant listed under §112, including any technology-based standard and any risk-based standard..."
- "(b)...The Administrator shall assess how benefits are measured in order to assure that damage to human health and the environment is more accurately measured and taken into account."

§812 Benefit-Cost Analyses Review Requirements

• "(f)...The Administrator shall appoint an Advisory Council... [consisting of] recognized experts in... health and environmental effects of air pollution, economic analysis, environmental sciences, and other [appropriate] fields."

• "(g)...The Council shall review... the data... the methodology... and the findings of such report, and make recommendations to the Administrator concerning the validity and utility of such findings."

§812 Benefit & Cost Estimation

- "Retrospective Study"
 - Submitted to Congress October 1997
 - Direct costs aggregated and fed to macro model
 - Benefits by pollutant as data and models allowed
- "Prospective Study"
 - Submitted to Congress November 1999
 - Direct costs estimated by title / major provision
 - Benefits by pollutant as data and models allowed

Retrospective Study Stationary Source Pollutants 14 key HAPs from Cancer Risk Study (1990):

- arsenic
- asbestos
- benzene
- 1,3-butadiene
- carbon tetrachloride
- chloroform
- chromium (VI)

- dioxin
- ethylene dichloride
- ethylene dibromide
- formaldehyde
- gasoline vapors
- product of incomplete combustion (PICs)
- vinyl chloride

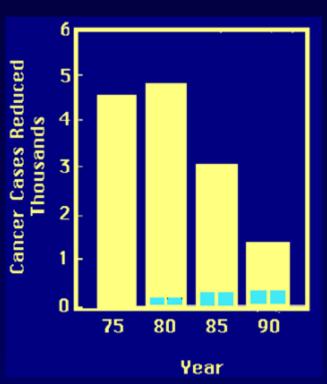
Retrospective Study Stationary Source Method

Incidence change assumed proportional to emissions change

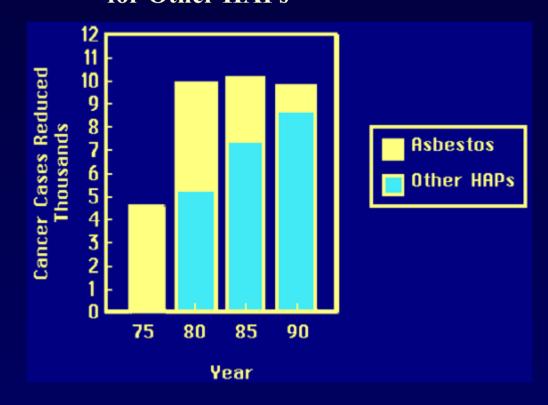
$$I_{ty} = I_{by} \times \frac{A_{ty}}{A_{by}} \times \frac{P_{ty}}{P_{by}} \times \frac{(1-C_{ty})}{(1-C_{by})}$$

```
I = incidence (from CRS) by = base year (85)

A = activity (from macro model) ty = target year (70, 75, 80, 90)


D = normalistics
```

P = population


 $C = control\ efficiency\ (from\ CTGs,\ BIDs,\ regs,\ experts)$

Retrospective Study Stationary Source Findings

Lower Bound for Other HAPs

Upper Bound for Other HAPs

Retrospective Study Stationary Source Review Issues

- Estimated incidence for vinyl chloride and asbestos much higher than historical incidence
- Cancer Risk Study designed for only rough order-ofmagnitude estimates
 - Unit risk factors are upper-bound estimates
 - Exposure estimates are typically upper-bound (MEI)
- Control efficiencies assumed uniform across facilities and 100% compliance with regulations

Retrospective Study Report to Congress Presentation

- HAP benefits excluded from primary analysis described in Appendix
- Quantitative analyses with caveats
 - Stationary source cancer incidence reduction estimates
 - Motor vehicle exposure reduction estimates
- Qualitative discussions
 - non-cancer health effects
 - ecosystem effects

-- Health Research Recommendations --

- Address additional pollutants
- Address mechanisms with pharmacokinetics
- Address variations in human susceptibility
- Address interactive effects of multiple exposures
- Develop alternatives to cancer upper-bound methods
- Develop D/R relationships for non-cancer effects
- Develop methods for acute exposure effects

- -- Exposure Research Recommendations --
- Expand data collection: control efficiencies, HAP speciation, facility locations and operating parameters
- Develop more comprehensive exposure models
- Refine uncertainty analysis methods

-- Ecosystem Research Recommendations --

- Estimate levels of bioaccumulating toxics in media
- Correlate levels of bioaccumulating toxics with exposures, concentrations, and adverse effects
- Develop wildlife correlate to RfD or D/R relationship
- Address effects of mixtures
- Address additional ecosystems
- Address wetland species and functions

-- Valuation Research Recommendations --

 Address additional endpoints consistent with kinds of damages expected

• Initiate broad-scope economic valuation using survey techniques

Prospective Study Methodology Alternatives Presented -- National Scale --

- Assessment System for Population Exposure Nationwide (ASPEN)
 - Emissions inventory
 - multiple pollutants
 - Air dispersion model
 - point, area, and mobile source categories
 - Exposure model (not completed)

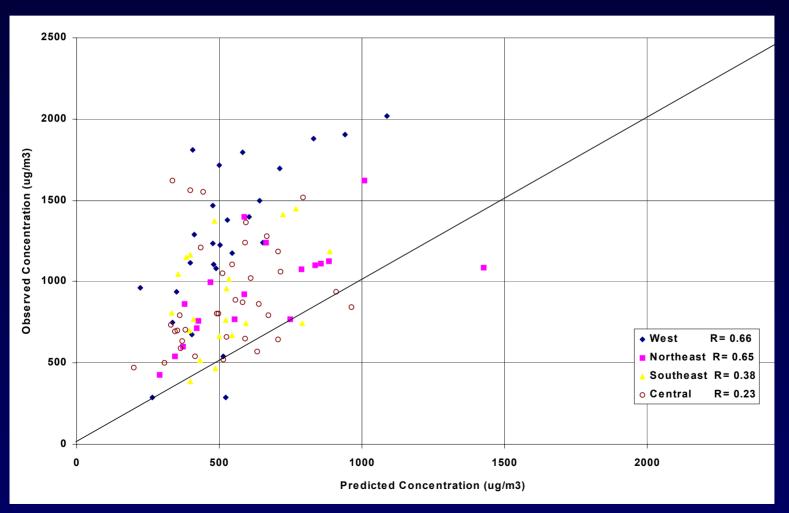
Prospective Study Methodology Alternatives Presented -- National Scale --

- Advantages
 - Includes treatment of
 - reactive decay (simplified)
 - secondary formation (simplified)
 - long-range transport (continental scale)
 - wet and dry deposition (parameterized)
 - Emissions/Dispersion well documented:
 - sensitivity analysis
 - model performance evaluation
 - uncertainty analyses

Prospective Study Methodology Alternatives Presented -- National Scale --

Limitations

- National emission inventory uncertainties
- Gaussian model limitations
- Meso-scale transport not addressed (50 200 km)
- Re-suspension not addressed
- Not stochastic
- Spatial and temporal peaks not addressed
- Indoor sources not addressed
- Indirect exposures not addressed


Prospective Study Methodology Alternatives Presented -- Local Scale / Case Study --

- Air Quality Integrated Management System (AIMS)
- Developed for Baltimore and planned for Houston and Chicago
- Integrates routinely collected data (measured air quality, emissions, and meteorological data) and dispersion modeling

Prospective Study Review Issues Raised

- Resources for in-depth analysis for 188 HAPs prohibitive: find priority HAPs
- Unit Risk Factors are upper-bound estimates
- Limited ambient monitoring data to validate ambient concentration estimates
- Exposure assessment limitations
 - 50 km downwind distance for dispersion
 - lack of attention to indirect pathways (e.g., Hg, dioxin)
 - ASPEN preliminary performance evaluation concerns

ASPEN Model Performance 1990 Carbon Monoxide

Prospective Study: Report to Congress Presentation

- No quantified benefits
- Expect benefits from MACT and incidental to criteria pollutant control
- Besides cancer inhalation impacts, other potential benefits include reductions in:
 - Non-cancer health effects
 - Indirect non-inhalation exposure
 - Ecological and welfare effects

Prospective Study Report to Congress Research Recommendations

- Workshops to address HAP benefits challenges:
 - toxicology/risk assessment
 - exposure assessment
 - economics
- Investigate use of EPA's Air Toxics Data Archive of measurement data from state / local programs
- Explore whether "supersite" monitoring programs can provide HAP ambient concentration data

Future §812 Studies

• Pondering potential scope, objectives, and reference period for "812 III"

• Detailed analytic blueprint to be developed, and HAP Workshop outcomes will be considered

• SAB Council and HEES will be asked to review analytical blueprint prior to initiation of work

Backup slides

Retrospective Study: Mobile Source Analysis

-- Methods --

- Based on Motor Vehicle Related Air Toxics Study (1993)
- Exposure estimated for CO using measured concentrations and HAPEM-MS
- Exposure to HAPs assumed proportional to emission factors

Retrospective Study: Mobile Source Analysis

-- Methods and Data--

$$E = ((A \times C) - B) \times M \times S \times \frac{VOC \times HAP}{CO}$$

E = exposure concentration

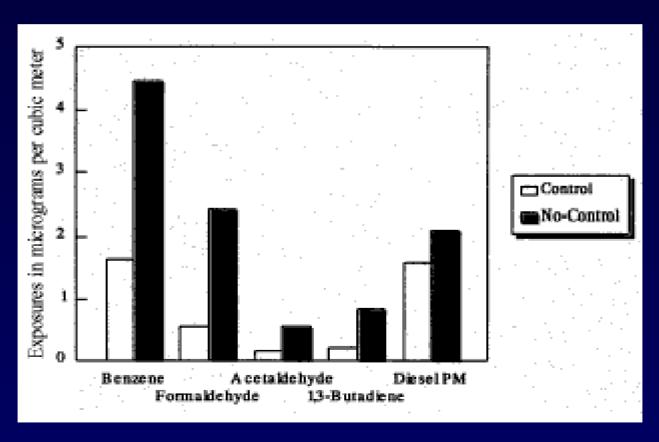
A = annual average CO ambient concentration (AIRS)

C = CO ambient to CO exposure concentration ratio (HAPEM)

B = CO background concentration (reported measurements)

M = fraction of CO emissions from mobile sources

S = scenario-to-control scenario CO emission factor ratio


VOC = VOC mobile emission factor by, scenario/year

HAP = HAP speciation factor for mobile source VOC, by scenario/year

CO = mobile source emission factor, by scenario/year

Retrospective Study: Mobile Source Analysis

-- Findings --

Future 812 Studies Tools Needed

- Expanded air toxics monitoring data
 - 90 new monitors by end of FY00
 - Air Toxics Data Archive to supplement AIRS with state and local data
- Improved emissions inventories
 - 1996 National Toxics Inventory (NTI)
- Evaluation/enhancement of air quality and exposure modeling tools
- Expanded risk data and improved methods

- Current risk assessment state-of-the-art
 - Probabilistic estimates for cancer
 - Reference doses/concentrations for non-cancer
 - More sophisticated D/R assessments for some criteria pollutants
 - Mixtures
 - Sum of upper-bounds for cancer
 - Hazard index for non-cancer

• Recent trends in risk assessment

- Cancer: mix of probabilistic (no threshold) and reference concentrations (threshold)
- Non-cancer: modeling and distributional approaches
- Dosimetry models focused on tissue concentrations

Potential sources of bias in risk estimates

- Linear high-to-low dose extrapolation
- Cross species scaling factor
- Treatment of untested chemicals and other data gaps
- Latent effects
- Use of most sensitive test results
- Non-cancer uncertainty factors
- Magnitude and severity of effects
- Route-to-route extrapolation
- Benchmark response rate (LED10 instead of NOAEL)
- Additive treatment of mixtures

- Uncertainty in risk estimates
 - Types
 - Causal link between exposure and effects
 - Magnitude of risk
 - Can use analysis of quantifiable uncertainty to develop central risk estimate
 - Unquantifiable uncertainty may still lead to bias
 - use of sensitive species
 - consideration of non-relevant effects

- Topics for discussion
 - How to characterize a distribution of risk estimates as an input to benefits assessment
 - How to characterize the value of reducing exposure in a reference dose framework: proportion of people above RfD, contingent valuation, other?
 - How to characterize benefits when uncertainty is great: point estimate, range, other?
 - Are some benefits better left unquantified?